On k-path Hamiltonian planar graphs
نویسنده
چکیده
We give a simple upper bound on k for k-path-hamiltonianness of a graph. Also given are exact values for maximal planar graphs. UN/VERSJTY LIBRARIES CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA 15213
منابع مشابه
The Hamiltonian Cycle Problem is Linear-Time Solvable for 4-Connected Planar Graphs
A Hamiltonian cycle (path) of a graph G is a simple cycle (path) which contains all the vertices of G. The Hamiltonian cycle problem asks whether a given graph contains a Hamiltonian cycle. It is NP-complete even for 3-connected planar graphs [3, 61. However, the problem becomes polynomial-time solvable for Cconnected planar graphs: Tutte proved that such a graph necessarily contains a Hamilton...
متن کاملHamiltonicity of automatic graphs
It is shown that the existence of a Hamiltonian path in a planar automatic graph of bounded degree is complete for Σ1 1 , the first level of the analytical hierarchy. This sharpens a corresponding result of Hirst and Harel for highly recursive graphs. Furthermore, we also show: (i) The Hamiltonian path problem for finite planar graphs that are succinctly encoded by an automatic presentation is ...
متن کاملHamiltonian Cycles in Triangle Graphs
We prove that the Hamiltonian cycle problem is NP complete for a class of planar graphs named triangle graphs that are closely related to inner triangulated graphs We present a linear time heuristic algorithm that nds a solution at most one third longer than the optimum solution and use it to obtain a fast rendering algorithm on triangular meshes in computer graphics
متن کاملHamiltonian Cycle Problem for Triangle Graphs
We show that the Hamiltonian cycle problem is NP-complete for a class of planar graphs named triangle graphs that are closely related to inner-triangulated graphs. We present a linear-time heuristic algorithm that nds a solution at most one-third longer than the optimum solution and use it to obtain a fast rendering algorithm on triangular meshes in computer graphics.
متن کاملOn vertices enforcing a Hamiltonian cycle
A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar gra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015